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Residual Topological Isomerism of Intertwined Molecules�
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Introduction

Significant achievements in the synthesis of a variety of
topologically nontrivial species, such as catenanes and
knots,[1,2] stimulated the increase in communication between
topologists and chemists.[3±5] In his book[1] Schill noticed ™as
the chemistry of molecules with mechanical bonds is extend-
ed and with it isomeric possibilities increase, further differ-
entiations will have to be introduced into the nomencla-
ture.∫ Indeed, the topological techniques, such as knot

theory,[3] and theories of molecular graphs[4] and molecular
cell complexes[5] have evolved resulting in numerous inter-
pretations of topological isomerism and topological chirality
reviewed both by experimentalists and theoreticians.[4±9]

Topology studies those properties of an object that are in-
variant under conditions of arbitrary deformations.[3,5] In
chemical topology[4,6] the object is a molecule or a molecular
assembly that is schematically represented on paper as a
graph. If the graph contains cross lines, then the graph and
the molecule are called nonplanar and topologically nontriv-
ial, respectively. Figure 1 shows examples of both nonplanar

(I and II) and planar (III) graphs, which are simplified pro-
jections of trefoil knot (trefoilane) enantiomers and a cyclic
molecule, respectively. The three structures I±III are topo-
logical isomers.

Despite the simple topological rule to apply arbitrary de-
formation[3] on the molecular graph to find out whether two
molecules are topologically isomeric or not, the differences
between a real molecule and its mathematical representa-
tion initiated the revision of topological models.[5,8] For ex-
ample, endohedral fullerene complexes and rotaxanes are
topologically trivial from the viewpoint of graph theory.
However, taking into account the chemical reality of stable
endohedral fullerene complexes and rotaxanes, these com-
pounds have been recently suggested to be considered as
topologically nontrivial structures despite their planar mo-
lecular graphs.[8] The authors[8] go beyond the limitations of
two-dimensional graphs and view a fullerene as an impene-
trable polyhedron surface prohibiting the decomposition of
endohedral complexes, and the stoppers of a rotaxane as in-
finite planes to reflect the actual impossibility of the wheel
de-threading under common laboratory conditions.
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Abstract: The growing number of molecular assemblies
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to time a revision of certain aspects of stereochemistry.
The present paper analyzes several representatives of
intertwined molecules that have bridges connecting
their loops. In spite of the experimentally proven chiral-
ity, these species lack elements of both classical and
topological chirality. Due to the relationship of these
types of molecules to the well-recognized topologically
nontrivial compounds, such as catenanes and knots, we
propose the term ™residual topology∫ illustrated by a
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could be excluded or included, respectively, in molecu-
lar graphs of these species to render them topologically
nontrivial. This concept paper represents, therefore, an
update on the currently applied nomenclature.
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Figure 1. Nonplanar (I and II) and planar (III) graphs that are simplified
projections of trefoil knot (trefoilane) enantiomers and a cyclic molecule,
respectively.
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An additional, aggravating aspect is the chirality. If a non-
planar graph, such as I or II in Figure 1, cannot be deformed
into its mirror image without cutting then such a graph is
topologically chiral. Thus, chemical topology classifies the
pair I/II in Figure 1 as topological enantiomers. In their
fruitful discussion on the classification of topologically chiral
molecules Liang and Mislow[7] used the molecular-graph ap-
proach to discern between classical and topological chirality.
According to this classification the former category includes
molecules that contain the classical stereogenic units,[10,11]

such as, point, axis, helix, and plane, while the latter refers
to the chirality of the nonplanar molecular graph.[4±9] How-
ever, as Mislow pointed out,[12] theoretical analysis of molec-
ular graphs is extremely complex, because a general algo-
rithm is lacking for deciding whether or not a given graph is
topologically chiral.

Interesting examples are the molecular Mˆbius ladders
(mˆbiusanes) with a variable number of rungs n (Figure 2).

If n=2, the graph can be rendered planar making the mole-
cule a topologically trivial, achiral object (Figure 2). If n=3,
then the species is topologically nontrivial as can be de-
duced from the fact that the 3-rung Mˆbius ladder fits to
the K3,3 graph of Kuratowski.[5,13] Nevertheless, as illustrated
in Figure 2, there exists a possibility to deform the three-
rung Mˆbius ladder, such that it has a symmetry plane and

is therefore lacking chirality.[14] Nonetheless, experimentally
it has been proven[15±18] that the compounds 1±3 correspond-
ing to Mˆbius ladders with n=2 or 3 depicted in Figure 2
are chiral though they do not have any classical stereogenic
unit.[10,11] Agreement between theory and experiment can be
obtained if one distinguishes sides and rungs of the three-
rung Mˆbius ladder by assigning them different ™colors∫.[5]

The discrepancy can also be overcome if the Mˆbius ladders
are treated as Mˆbius strips,[8] which are classical topological
objects.

As becomes evident from the short discussion on endohe-
dral fullerenes, rotaxanes, and mˆbiusanes, there are differ-
ent approaches for the translation of a real molecule into its
graph and, as a consequence, the theoretical detection of
both topology and chirality of a molecule depends on the
method that is applied.[3,5] Nonetheless, chemists may not
discard the mathematical analysis of molecular systems,
since it provides useful insights into the origin of molecular

symmetry, topology, and chirali-
ty. In this context a method
based on building of a ™molecu-
lar-cell complex∫,[5] for exam-
ple, in which impenetrable rings
(e.g., benzene ring) are cells in
the molecular graph, is an at-
tractive theoretical tool that
takes into account information
regarding physically admissible
deformations of a molecule and
can therefore be recommended
to chemists. This approach was
shown to be very helpful in an-
alyzing the origin of the chirali-
ty of [m][n]paracyclophanes
and multilayered cyclo-
phanes.[19] According to their
molecular-cell complexes, the
chirality of these cyclophanes is
due to their topology rather
than their geometry.[5] This con-
clusion contradicts, on the one
hand, the accepted practical no-
menclature on helical[10] or
planar[11] chirality in cyclo-
phanes and related systems. On
the other hand, such contradic-
tions indicate the necessity of
an update on the established
nomenclature pertaining to the
molecular isomerism and ele-
ments of chirality in the light of
the growing number of molecu-

lar assemblies with unusual geometrical and topological iso-
merism.[4±9,20] For instance, Diederich et al.[21] have recently
introduced new chirality descriptors based on the clockwise
and anticlockwise atom numbering in chiral fullerenes. The
need for the new descriptors in this case was due to the fact
that none of the standard stereogenic units could be as-
signed to the intrinsically chiral fullerene spheroids. Nico-

Figure 2. Molecular Mˆbius ladders with a variable number of rungs n (n=2 or 3).
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laou, Boddy, and Siegel,[22] in turn, have discussed the limits
of the Cahn±Ingold±Prelog (CIP) nomenclature concerning
its applicability to some systems that involve different ster-
eogenic units.

In this contribution we want to draw attention to some
problems regarding to the isomerism classification and their
solution on the borderline between the rules of the standard
topology and the physicochemical properties of the real
molecules. Our interest was initiated by a figure showing
how the pretzel-shaped body (a representation of the pret-
zel-shaped molecule 4,[23] which can be viewed as a bridged

[2]catenane) is converted into a topologically trivial species
composed of two bridged rings (Figure 3).[24] The connection
(™bridge∫ in the IUPAC language[25]) between the two rings
may collapse to a point, which is common to the two rings.
Then the two rings of the pretzel-shaped figure can de-
thread. The same procedure unties the bridged knot 5.[26]

This is especially remarkable, since the parent links and
knots, representing molecular catenanes and knots, respec-
tively, are well established to be topologically nontrivial.
However, for real molecular examples of 4 and 5 de-thread-
ing without bond breaking appears impossible. If de-thread-
ing and threading were possible for compound 4, an optical-
ly inactive mixture of pretzel-shaped molecule should result.
On the contrary, the observed chirality of pretzelane 4[23] is
even more pronounced than that of its parent topologically
chiral catenane (which is equivalent to an oriented Hopf
link in topology[3,5]). A related issue has recently been point-
ed out by Taylor and co-workers,[27] who analyzed a number
of knotted proteins. Despite the fact that some proteins
have been shown to contain knots with loose termini (i.e. ,
they may not be called ™knots∫ in the strict mathematical
sense), in reality it is impossible to disentangle these pro-
teins due to numerous intramolecular hydrogen bonds. A
knot 6 with coiled loose ends is the cartoon representation
of one of the possible structures that such protein may
assume. The authors call such proteins ™pseudoknots∫[27] to
distinguish them from the true topological knots that are
closed loops due to covalent bonds. Thus, as the authors
point out, the definition becomes a matter of energy.

The evident problem for chemists in research and teach-
ing at this point is to deal with the real isomerism of such
topologically trivial compounds. In other words, the question
arises how to describe the experimentally found chirality of
these systems in the context of existing classifications if the
chirality cannot be rationalized by means of classical stereo-
genic units and is not recognized in topology.[7] The above-
mentioned approach[8] going beyond graph theory to extend
topological isomerism to rotaxanes and endohedral fullerene
complexes fails at interpreting the topology of pretzelanes,
pseudoknots, and related species.

Fortunately, there are intertwined molecules, including
catenanes[1,2] (in topology they are called ™links∫[3,5]) and
trefoil knots,[28±31] which belong to the well-established topo-
logical objects. We suggest using these structures as refer-
ence points in the analysis of the isomerism. Topologically
trivial molecules such as the pretzelane 4 and the bridged
knot 5 are then viewed as derived from topologically non-
trivial species, such as [2]catenane and knot, respectively,
through addition of bridges, and topologically trivial mole-
cules, such as rotaxanes and the ™pseudoknot∫ 6, are similar-
ly viewed as derived from [2]catenane and knot, respective-
ly, through removal of bridges. In Figure 4 some examples
with ™missing∫ or ™excessive∫ bridges are shown. Taking this
relationship and the isomerism of the real molecules into ac-
count, we propose ™residual topological isomerism∫ as the
term to name this kind of isomerism.[32] In this way, the pret-
zel-shaped compound 4 represented in Figure 3 as graph A
would be the ™residual topological isomer∫ (or simply RT
isomer) of two bridged rings corresponding to the graph F
in Figure 3. Similarly, the enantiomers of 4 could be called
™residual topological enantiomers∫. Interestingly, this ap-
proach allows for the rational treatment of isomerism and
chirality in rotaxanes and their derivatives, such as the ™mo-
lecular-8∫ structure[33] and the [1]rotaxane[34] (Figure 5) pre-
pared by bridging the wheel and axle of the corresponding

Figure 3. How a pretzel-shaped body can be converted into a topological-
ly trivial species composed of two bridged rings.
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[2]rotaxanes. Both compounds are examples of species with
missing bridges. A doubly bridged catenane that has recent-
ly been obtained from tetraurea-calix[4]arene dimer is in
turn a new representative of the pretzelane family bearing
excessive bridges.[35] Moreover, the term ™residual topologi-
cal isomerism∫ can be applied to chiral fullerenes that con-
tain bridges. Figure 4 shows how an additional bridge on a
bridged fullerene transforms it into a topologically chiral
object. Triply bridged C60 derivatives, such as 7, have been

established to be topologically chiral.[36] One could also
think of an extension of the suggested approach toward in-
terlocked compounds in which, similarly to the pseudo-
knots,[27] mechanically bonded constituent parts have bridges
of noncovalent nature. This last class of compounds could
be exemplified by catenanes and rotaxanes built up of
metal-coordinated counterparts.[2,37,38]

Conclusions and outlook

From the theoretical standpoint pretzelanes, pseudoknots,
and related species are topologically trivial and achiral, but
chemically they are certainly intertwined and chiral. What
type of chirality is that? It is not a topological and not a
classical one, so there is an apparent practical need for a
name for this phenomenon. We propose ™residual topologi-
cal isomerism∫ (RT isomerism) as a descriptive term that
views such compounds as derived from parent, topologically
nontrivial species by addition or removal of bridges and
thus accounts for the origin of experimentally found isomer-
ism. Isomers of such molecular structures can be called RT
isomers, while in case of chiral systems of this type the term
™residual topological chirality∫ (RT chirality) can be ap-
plied.

Even though the present concept might not eliminate all
the uncertainties that have to be clarified in the field of mo-
lecular entities with unusual geometry and topology, it helps
to systematize a considerable number of mechanically inter-
twined species. The updates on the established nomencla-
ture applicable to the molecular isomerism and elements of
chirality will further be necessary due to the developments
of relevant theoretical tools and the growing number of mo-
lecular assemblies with unusual geometrical and topological
isomerism. Future theoretical efforts stimulated by corre-
sponding experimental results should lead to the more accu-
rate partition in the description of geometrical and topologi-
cal means of isomerism and chirality phenomena.
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